
	

	

June 30, 2022 
 
The Honorable Jessica Rosenworcel, Chairwoman, Federal Communications 
Commission  
 
The Honorable Brendan Carr, Commissioner, Federal Communications Commission 
 
The Honorable Geoffrey Starks, Commissioner, Federal Communications Commission 
 
The Honorable Nathan Simington, Commissioner, Federal Communications Commission 
 
Federal Communications Commission, 45 L Street, NE Washington, DC 20554 
 
 
 
Environmental Working Group petitions the FCC to protect children’s health by 
setting strict standards limiting public exposure to radiofrequency radiation  
 
To the Federal Communications Commissioners: 
 
The Environmental Working Group, or EWG, a nonprofit research and advocacy 
organization with headquarters in Washington, D.C., is petitioning the Federal 
Communications Commission to protect children’s health from radiofrequency radiation 
by setting strict new standards limiting such exposures from wireless communication 
devices. 
 
Cutting-edge research by EWG and many other scientists and organizations revealed that 
federal regulation of radiation emitted by wireless devices is woefully outdated and does 
not protect public health. The FCC set standards for wireless radiation in 1996, before 
Wi-Fi or smartphones even existed, and before 24-hour daily exposure to radiofrequency 
radiation became a reality for today’s young generation. Since 1996, an ever-growing 
body of research has raised concerns about the health impacts of radiation from wireless 
devices, including harm to the nervous system, harm to the reproductive system and 
elevated risk of cancer. 
 
With this letter, we are submitting the signatures of over 22,000 people who, together 
with EWG, are asking the FCC to protect public health and develop strict health-based 
regulation of radiofrequency radiation emitted by wireless devices. Details of EWG’s 
recommendations, supporting information and references to peer-reviewed studies are 
provided below. The names of signatories to the EWG petition are included with this 
letter as Appendix B.  
 



	

	

1. Since 2013, EWG has urged the FCC to strengthen its radiofrequency radiation 
standards, so they adequately protect both children and adults 
 
The current FCC standards for exposure to radiofrequency radiation for the general 
population were set a quarter-century ago, following passage of the 1996 
Telecommunications Act. The standards were based on the 1986 recommendations of the 
National Council on Radiation Protection and Measurements1 and 1991 
recommendations of the Institute of Electrical and Electronics Engineers,2 which chose 
an exposure limit based on behavioral changes observed in laboratory animals exposed to 
radiofrequency radiation for a duration of minutes to hours in studies conducted in the 
1970s and 1980s. Considering substantial new research showing that radiofrequency 
radiation exposure can harm health, even at levels below the current federal limits, the 
FCC needs to review the latest science and update the allowable exposure limits.  
 
Much has changed since the federal limits were set, including technology and uses of 
radiofrequency-emitting wireless devices. Most people in the U.S., including children and 
the developing fetus, are now exposed to radiofrequency radiation. The current federal 
limits do not consider the impact of radiofrequency radiation on children, even though 
peer-reviewed studies show the bodies of children absorb more radiofrequency radiation 
than those of adults, putting children at greater health risk from such exposures.3  
 
Between 2013 and 2015, EWG submitted to the FCC multiple comment letters urging the 
Commission to strengthen its radiofrequency radiation standards. In our earlier letters, 
EWG noted that federal regulations must be revised so they would (1) adequately protect 
both children and adults from radiation emitted by wireless communication devices, (2) 
reflect actual current use patterns, and (3) provide meaningful consumer disclosure 
without preempting states from requiring additional disclosure. EWG also emphasized 
that under no circumstances should the FCC consider weakening its existing standards. 
 
Most recently, in response to the court ruling in Environmental Health Trust et al. v. 
FCC, EWG sent a letter to the FCC, together with the filings submitted by the 
Environmental Health Trust on November 30, 2021, highlighting the new scientific 
developments documenting adverse health effects of radiofrequency radiation. In our 
letter, EWG requested that the FCC reopen Docket 13-84, “Reassessment of FCC 
Radiofrequency Exposure Limits and Policies,” and Docket 03-137, “Proposed Changes 
to the Commission Rules Regarding Human Exposure to Radiofrequency 
Electromagnetic Fields,” to allow robust review and consideration of scientific evidence 
published in the past two years and in response to the court ruling in the Environmental 
Health Trust court case. Reopening these two dockets, as well as a new review and 
consideration of scientific evidence, is essential for the establishment of a much-needed 
strict exposure standard that would protect children’s health from potential adverse 
effects of radiofrequency radiation. 



	

	

2. Peer-reviewed research published by EWG scientists supports the need for much 
lower health-based standards for exposure of both children and adults to 
radiofrequency radiation 
 
As a step toward advancing a reevaluation of the existing federal limits for 
radiofrequency radiation exposure, EWG reviewed the latest science and in 2021 
published a peer-reviewed study4 that recommends lower health-based exposure 
standards for both children and adults. EWG study is included with this letter as 
Appendix A. EWG recommendation draws on data from the landmark 2018 National 
Toxicology Program study, one of the largest long-term laboratory studies on the health 
effects of radiofrequency radiation exposure.5 
 
EWG’s study applied a methodology similar to the one developed by the U.S. 
Environmental Protection Agency to assess human health risks from toxic chemical 
exposures to radiofrequency radiation from wireless devices. EWG recommends a limit 
of a whole-body specific absorption rate, or SAR, at 0.0002 to 0.0004 watts per kilogram 
(W/kg) for children, which is 200 to 400 times lower than the current federal whole-body 
SAR exposure limit of 0.08 W/kg. For adults, EWG recommends a whole-body SAR 
limit of 0.002 to 0.004 W/kg, 20 to 40 times lower than the federal limit.4 
 
3. Epidemiological studies and research in laboratory animals support the need for 
limiting exposures to radiofrequency radiation 
 
Both epidemiological and animal studies have linked radiofrequency radiation exposure 
to harmful health effects. These harmful health effects associated with radiofrequency 
radiation may be caused by changes in the activity of voltage-gated calcium channels,6 
changes in the concentrations of reactive oxygen species and redox homeostasis,7 
changes in intracellular enzymes and gene expression,8 disruption of the blood-brain 
barrier9 and changes in membrane permeability.10  
 
Research in laboratory animals suggests radiofrequency radiation can increase the risk of 
abnormal fetal development, affect hormone levels and decrease ovulation,11 which may 
increase the risk for female infertility. Animal studies show exposure can damage the 
estrogen-producing granulosa cells in the ovaries, endometrial tissue and developing egg 
cells. Epidemiological research reported changes in fetal heart physiology following 
prenatal exposure to radiofrequency radiation.12 
 
Radiofrequency radiation exposure can harm male fertility by decreasing sperm quality 
(motility, viability and levels),13,14,15,16,17,18 changing sperm form and structure,19,20,21 and 
changing hormone levels in the testis.22,23,24,25,26 Radiofrequency radiation exposure can 
cause changes in electrical activity and biochemical alterations in the nervous system, as 
well as behavioral and cognitive changes. The changes include alteration in glucose 



	

	

metabolism in the brain27 and in brain blood flow,28  as well as in electrical activity in the 
brain detected by electroencephalography.29 Radiofrequency radiation exposure has also 
been linked to changes in behavior,30 sleep,31 learning capacity and memory,32 and an 
increased risk of headaches.33  
 
Exposure to wireless radiation has been also associated with an increased risk of cancer, 
including gliomas,34 parotid gland tumors35 and thyroid cancers.36 In 2011, the 
International Agency for Research on Cancer, or IARC, an agency of the World Health 
Organization, classified radiofrequency electromagnetic fields as “possibly carcinogenic 
to humans.” IARC’s classification was based on the increased risk of malignant brain 
cancer, glioma, observed among cell phone users.  
 
Conclusion 
 
In closing, the EWG, together with 22,000 signatories to our petition, urge the FCC to 
develop strict health-based regulation of radiofrequency radiation emitted by wireless 
devices to protect public health. Given the widespread use of wireless devices, and 
research showing evidence of harmful effects associated with radiofrequency radiation 
exposure, scientists and public health advocates are justified in their concerns about the 
adequacy of the current exposure limits. Today’s generation of children is exposed to 
radiofrequency radiation starting from the fetal development period and will likely 
experience these exposures for the duration of their lives. A public-health-focused 
reassessment of exposure limits for radiofrequency radiation is urgent and essential.  
 
Submitted on behalf of the Environmental Working Group, 
Uloma Igara Uche, Ph.D. 
Environmental Health Science Fellow 
Environmental Working Group 
 
Tasha Stoiber, Ph.D. 
Senior Scientist 
Environmental Working Group 
 
Olga V. Naidenko, Ph.D. 
Vice President, Science Investigations 
Environmental Working Group 
 
Appendix A: Peer-reviewed study by Uche U.I., Naidenko O.V. Development of health-
based exposure limits for radiofrequency radiation from wireless devices using a 
benchmark dose approach. Environ Health. 2021; 20(1):84. 
 
Appendix B: Signatories to EWG’s petition to the FCC 
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RESEARCH

Development of health-based exposure 
limits for radiofrequency radiation from wireless 
devices using a benchmark dose approach
Uloma Igara Uche* and Olga V. Naidenko 

Abstract 

Background: Epidemiological studies and research on laboratory animals link radiofrequency radiation (RFR) with 
impacts on the heart, brain, and other organs. Data from the large-scale animal studies conducted by the U.S. National 
Toxicology Program (NTP) and the Ramazzini Institute support the need for updated health-based guidelines for 
general population RFR exposure.

Objectives: The development of RFR exposure limits expressed in whole-body Specific Absorption Rate (SAR), a 
metric of RFR energy absorbed by biological tissues.

Methods: Using frequentist and Bayesian averaging modeling of non-neoplastic lesion incidence data from the NTP 
study, we calculated the benchmark doses (BMD) that elicited a 10% response above background  (BMD10) and the 
lower confidence limits on the BMD at 10% extra risk  (BMDL10). Incidence data for individual neoplasms and com-
bined tumor incidence were modeled for 5% and 10% response above background.

Results: Cardiomyopathy and increased risk of neoplasms in male rats were the most sensitive health outcomes 
following RFR exposures at 900 MHz frequency with Code Division Multiple Access (CDMA) and Global System for 
Mobile Communications (GSM) modulations.  BMDL10 for all sites cardiomyopathy in male rats following 19 weeks of 
exposure, calculated with Bayesian model averaging, corresponded to 0.27–0.42 W/kg whole-body SAR for CDMA 
and 0.20–0.29 W/kg for GSM modulation.  BMDL10 for right ventricle cardiomyopathy in female rats following 2 years 
of exposure corresponded to 2.7–5.16 W/kg whole-body SAR for CDMA and 1.91–2.18 W/kg for GSM modulation. For 
multi-site tumor modeling using the multistage cancer model with a 5% extra risk,  BMDL5 in male rats corresponded 
to 0.31 W/kg for CDMA and 0.21 W/kg for GSM modulation.

Conclusion: BMDL10 range of 0.2—0.4 W/kg for all sites cardiomyopathy in male rats was selected as a point of 
departure. Applying two ten-fold safety factors for interspecies and intraspecies variability, we derived a whole-body 
SAR limit of 2 to 4 mW/kg, an exposure level that is 20–40-fold lower than the legally permissible level of 0.08 W/kg for 
whole-body SAR under the current U.S. regulations. Use of an additional ten-fold children’s health safety factor points 
to a whole-body SAR limit of 0.2–0.4 mW/kg for young children.

Keywords: Radiofrequency radiation, Specific Absorption Rate, SAR, Exposure guidelines, Benchmark modeling
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Introduction
The health risk assessment of non-ionizing electromag-
netic radiation generated science and policy debates for 
decades, particularly around the health effects of radi-
ofrequency radiation (RFR) in the 3  kHz to 300  GHz 
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frequency range used for wireless communications 
[1–4]. Among the reported biological effects of elec-
tromagnetic fields are harm to fetal growth and devel-
opment [5–13], changes in heart rate variability [14, 
15], changes in brain activity [16, 17], and elevated 
risk of several cancers [18–21]. In 2011, the Interna-
tional Agency for Research on Cancer (IARC) classi-
fied radiofrequency electromagnetic fields as “possibly 
carcinogenic to humans” based on an increased risk of 
glioma, a malignant brain cancer, associated with cel-
lular phone use [18].

The mechanisms by which radiofrequency radiation 
affects cells, tissues, and organisms are not well under-
stood and may include diverse processes such as inhibi-
tion of the mitotic spindle apparatus leading to impaired 
cell division and cell death [22], changes in the activ-
ity of voltage-gated calcium channels [23–26], changes 
in the concentrations of reactive oxygen species and 
redox homeostasis [25, 27–32], changes in intracellu-
lar enzymes and gene expression [33], and changes in 
membrane permeability [34]. DNA damage following 
exposure to RFR [35, 36] may be a direct effect or due to 
secondary mechanisms, such as interference with DNA 
repair processes [37]. As summarized in a recent review, 
these biological effects of RFR occur without substantial 
temperature increases in tissues [27]. Highlighting the 
complexity of these biological interactions, some forms 
of electromagnetic fields, described as “tumor treat-
ing fields” in the medical research literature, are now 
explored as a potential therapy for glioblastoma and 
other cancers [22, 38].

With a continuously growing variety of RFR sources 
in the everyday environment and drastically increased 
intensity of daily exposure to RFR from personal wire-
less devices and from short- and long-range sources 
such as Wi-Fi routers, cell phone towers, and small cell 
transmitters, the question of safe exposure levels for the 
public, especially children, is urgent and important. In 
the U.S., general population exposure standards for RFR 
were set by the Federal Communications Commission in 
1996 based on studies conducted in the 1970s and 1980s 
in which behavior changes were observed in laboratory 
animals exposed to RFR for the duration of minutes to 
hours [2, 39, 40]. For the frequency range of 100 kHz to 
6  GHz, the U.S. standards define the legally allowable 
exposures in terms of Specific Absorption Rate, or SAR, 
which refers to the relative amount of energy absorbed by 
biological tissues. For non-occupational exposures, U.S. 
regulations allow a SAR of 0.08 W/kg averaged over the 
whole body and a localized peak spatial SAR of 1.6  W/
kg averaged over 1 g of tissue. Localized peak SAR lim-
its apply to wireless device use in immediate contact with 
the body, for example a cellular phone held near the head.

In the past two decades, epidemiological studies 
reported an elevated risk of gliomas, acoustic neuromas, 
parotid gland tumors, and thyroid cancers in regular 
cellular phone users. The challenge of ascertaining the 
length, frequency, and intensity of wireless device use 
and continuously changing communication technolo-
gies make it difficult to develop a precise exposure met-
ric from epidemiological research. Recent studies of RFR 
in laboratory animals provide much-needed informa-
tion on the specific RFR exposure levels associated with 
elevated risks of adverse health effects [41]. The results 
from two long-term, large-scale studies of RFR in labora-
tory rodents, the study from the U.S. National Toxicology 
Program (NTP) [42] and the study from the Ramazzini 
Institute in Italy [7, 43], are especially informative. The 
NTP study examined the health effects of the RFR expo-
sure of interim duration (19 weeks, including the prenatal 
period) and long-term exposure (2  years) and reported 
cardiotoxic, genotoxic, and carcinogenic effects [35, 44–
46]. In the Ramazzini Institute study, rats were exposed 
from prenatal life until natural death, and a statistically 
significant increase in the incidence of heart schwanno-
mas was reported [7]. Here we model the health effects 
incidence data from the National Toxicology Program 
(NTP) to estimate the departure points for exposure 
guidelines and to open the discussion of exposure limits 
for wireless devices that would protect the health of vul-
nerable populations, especially children.

Methods
Lesion incidence data were accessed from the National 
Toxicology Program (NTP) reports [20, 21]. The NTP 
examined the effects of RFR with two different modu-
lations, Code Division Multiple Access (CDMA) and 
Global System for Mobile Communications (GSM), and 
in two species: rats and mice, exposed to 900 MHz and 
1900 MHz radiation, respectively [44, 45]. Animals were 
exposed every day for the duration of the analysis, and 
the length of daily RFR exposure totaled 9 h, 10 min per 
day, achieved via 18 h, 20 min daily exposure in 10-min 
on–off cycles. The study design for the two species dif-
fered with respect to early life exposure. Rats were 
exposed from the prenatal period, starting on gestation 
day 5, during the 3-week lactation period, and continuing 
for the rest of the two-year study duration, with whole-
body SAR levels of 1.5, 3, and 6 W/kg [44]. For mice, daily 
exposure with whole-body SAR levels of 2.5, 5, or 10 W/
kg started at 5–6 weeks of age, around the age of puberty 
in this species [45]. The NTP study reported an increased 
incidence of cardiomyopathy in female and male rats 
and increased incidences of various neoplasms in male 
rats [44]. In contrast, similar effects were not observed 
in mice [45]. For the analysis here, we focused on the 



Page 3 of 14Uche and Naidenko  Environ Health           (2021) 20:84  

data from rats because that dataset reflects the potential 
health impacts of life-long exposure to radiofrequency 
radiation starting from the prenatal period.

Benchmark dose modeling for non-neoplastic and 
neoplastic incidence data was conducted using U.S. 
EPA Benchmark Dose Software (BMDS) version 3.2 
(https:// www. epa. gov/ bmds). For non-neoplastic effects, 
we used both frequentist and Bayesian model averag-
ing options within the BMDS software. For neoplastic 
effects, we used the frequentist multistage cancer model 
(MS Combo) following the U.S. EPA’s technical guidance 
for modeling tumor data [47]. The benchmark approach 
considers the response at all doses tested in the study 
and can help fill the data gap regarding the shape of the 
dose–response curve below the lowest dose tested. As 
discussed in the benchmark dose modeling research lit-
erature [48–50], the best fitting models were selected 
based on the lowest Akaike Information Criterion, good-
ness-of-fit p values, scaled residual, and visual inspection 
of the curve fit.

For benchmark modeling, the choice of the appropriate 
percentage change in the response above the background 
depends on the specific dataset [47]. Peer-reviewed lit-
erature and guidance documents on BMD modeling 
published by authoritative agencies have used BMD 
modeling with 5% or 10% extra risk [47, 48, 50]. Here we 
applied the standard approach of calculating the bench-
mark dose  (BMD10) at a 10% benchmark response for 
non-neoplastic incidence data. For neoplastic incidence 
data, we conducted modeling of both 5% and 10% bench-
mark response above the background and selected the 
5% response rate  (BMD5) as an approach that allowed for 
successful modeling of the neoplasm incidence data from 
the NTP study. BMDS software also calculates the 95% 
lower confidence limit (BMDL) on the exposure level 
that would produce a response at a selected incidence 
frequency above the background [47]. BMDL values can 
be used as a point of departure for the development of 
health-based guidelines and risk assessment.

Results
Analysis of dose–response patterns for different lesions 
observed in the NTP study suggests that some health 
effects associated with RFR exposures exhibit non-
monotonic dose–response relationships that may be 
influenced by gender and RFR modulation. RFR expo-
sure corresponding to whole-body SAR of 1.5  W/kg, 
the lowest tested level in the NTP study, was associated 
with an increase in the incidence of various nonneo-
plastic and neoplastic effects relative to sham-exposed 
animals, indicating that “No Observed Adverse Effect 
Level”, or NOAEL, was not identified in the NTP study. 
For some health outcomes, the highest incidence in 

the RFR-exposed versus control group was observed at 
1.5 W/kg exposure, with a decrease in incidence at SAR 
values of 3 and 6 W/kg.

The findings for cardiomyopathy are particularly com-
pelling. Cardiomyopathy is defined in the NTP report as 
the “degeneration and necrosis of myofibers with a mild 
inflammatory response of macrophages and lymphocytes 
with occasional neutrophils [44]”. While observed in both 
males and females and at both RFR modulations, dose–
response relationships were distinct for right ventricle 
versus all sites cardiomyopathy. At 19  weeks of expo-
sure, CDMA-exposed male rats had a lower incidence of 
right ventricle cardiomyopathy in the 3 and 6 W/kg dose 
groups compared to the 1.5 W/kg dose group, an effect 
that was not observed in GSM-exposed male rats at the 
same time point (Fig.  1A). For all sites cardiomyopathy, 
male rats in the highest-dose GSM group (SAR 6  W/
kg) had lower incidence compared to male rats in the 
second-highest dose group of 3 W/kg, while for CDMA-
exposed male rats all sites cardiomyopathy incidence 
was the same for the 3 and 6 W/kg groups (Fig. 1B). At 
19  weeks, cardiomyopathy incidence in females was 
lower than in males and did not exhibit a dose–response 
relationship (Fig.  1). At 2  years, right ventricle cardio-
myopathy in both CDMA- and GSM exposed rats exhib-
ited a visible dose–response relationship (Fig. 2A), which 
was not observed for all sites cardiomyopathy (Fig.  2B). 
Overall, increased incidence of cardiomyopathy both 
at the interim examination point of 19 weeks and at the 
end of the study reinforces the health significance of the 
findings.

We conducted BMDS modeling for all available car-
diomyopathy datasets from the NTP study. Successful 
model fitting was observed for all sites cardiomyopathy 
in male rats at 19  weeks of exposure and for right ven-
tricle cardiomyopathy in both male and female rats at 
the 2-year point (Supplementary Table 1). Figures 3 and 
4 illustrate the modeling results for all sites cardiomyo-
pathy in male rats at 19 weeks for CDMA (Fig. 3A) and 
GSM modulations (Fig.  3B) and right ventricle cardio-
myopathy in female rats at 2 years for CDMA (Fig. 4A) 
and GSM (Fig.  4B). Different BMDS frequentist models 
resulted in similar or identical BMD values and compa-
rable quality of data fit (Supplementary Table 1). Due to 
the lack of biological information for determining which 
mathematical model would be most appropriate for the 
datasets analyzed here, we used the Bayesian model aver-
aging approach to define the  BMD10 and  BMDL10 values. 
Since the highest variability in the dose–response rela-
tionship was observed at the highest SAR exposure dose, 
we conducted modeling with and without this data point 
(Supplementary Table 2 and Table 1).

https://www.epa.gov/bmds
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While BMD modeling of the datasets without the high-
est dose of 6 W/kg SAR generally resulted in better model 
fit, overall BMD and BMDL values were comparable for 
modeling with and without the highest dose (Supple-
mentary Table 1). For male rats at 19 weeks of exposure, 
the  most sensitive responses were observed for GSM, 
with 0.2–0.29 w/kg  BMDL10, compared to 0.27–0.42 W/
kg  BMDL10 value for CDMA (Table 1). The range of val-
ues reported corresponds to modeling with the highest 
dose included (0.42 W/kg for CDMA and 0.29 W/kg for 
GSM) and excluded (0.27 W/kg for CDMA and 0.2 W/kg 
for GSM).

BMD modeling of right ventricle cardiomyopathy data 
for female and male rats following a  2-year exposure 
resulted in consistently lower BMD and BMDL values for 
males compared to females, indicating greater suscep-
tibility of males to RFR-induced cardiomyopathy (Sup-
plementary Tables  1 and 2).  BMDL10 for right ventricle 
cardiomyopathy in females corresponded to 2.7–5.16 W/
kg whole-body SAR for CDMA and 1.91–2.18 W/kg for 
GSM modulation (Table 2). In male rats, the correspond-
ing  BMDL10 values were 0.7–0.79 W/kg whole-body SAR 
for CDMA and 0.33–0.42  W/kg for GSM modulation 
(Table 2).

Fig. 1 Cardiomyopathy incidence at 19 weeks. Each experimental group had 10 animals. Where no bar is shown, the specific outcome in question 
was not observed in the animal group. A Right ventricle cardiomyopathy. B All sites cardiomyopathy
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Non-monotonic dose–response relationships were also 
observed in the NTP dataset for hyperplasias (Fig.  5). 
The incidence of prostate gland hyperplasia in male rats 
and adrenal medulla effects in female rats increased 
and decreased along the range of exposure doses tested 
(Fig. 5). A complex dose–response relationship also was 
seen for the tumors in the heart, brain, pituitary gland, 
adrenal medulla, prostate gland, and liver. For certain 
outcomes, animals in the 6  W/kg exposure group had 
the highest incidence, such as heart schwannomas in 
CDMA- and GSM- exposed male rats (Fig. 6A). In con-
trast, a decrease in incidence in the 6 W/kg groups was 
observed for several neoplasms, such as adrenal medulla 
neoplasms in CDMA-exposed female rats (Fig. 5), pitui-
tary gland adenomas in CDMA-exposed male rats 
(Fig.  6B), and adrenal medulla and prostate gland neo-
plasms in GSM-exposed male rats (Fig. 6B).

Frequentist modeling of benchmark values for adrenal 
medulla hyperplasia in female rats and prostate gland 
epithelium hyperplasia in male rats following a  2-year 
exposure resulted in  BMD10 higher than  BMD10 values 
for cardiomyopathy (Supplementary Table 3). Most of the 
modeled  BMDL10 values for these two health outcomes 
were in the range of 1–3 W/kg whole-body SAR. Similar 
to the greater sensitivity of males to RFR-induced cardio-
myopathy compared to females, prostate gland epithe-
lium hyperplasia in males was a more sensitive outcome 
than adrenal medulla hyperplasia in females (Fig. 5, Sup-
plementary Table 3).

Following the approaches recommended by the U.S. 
EPA BMDS technical guidance [47] and the published 
methods for tumor data modeling from the California 
Environmental Protection Agency Office of Environ-
mental Health Hazard Assessment [51], we modeled 
the benchmark values for specific neoplasms as well as 

Fig. 2 Cardiomyopathy incidence at 2 years. Each experimental group had 90 animals. A Right ventricle cardiomyopathy. B All sites 
cardiomyopathy
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multi-site tumor incidence in male rats. Neoplasm inci-
dences in female rats could not be modeled. For male 
rats, the non-monotonic dose–response relationship 
patterns precluded BMDS modeling of certain tumor 
outcomes using all exposure dose groups (Supplemen-
tary Tables  4 and 5). Using all exposure dose groups, 
heart schwannoma data for male rats could be modeled 
for both CDMA and GSM exposures with 5% and 10% 
change in response rate above background (Table  3). 
With 10% response modeling for heart schwannoma, cal-
culated  BMD10 values exceeded the SAR value of 6  W/
kg for the highest exposure dose group in the study, 

suggesting that the 10% response modeling is not practi-
cal for some tumor types in this dataset.

The omission the highest exposure dose group and 
the use of 5% BMR as the modeling approach allowed 
the modeling of more tumor outcomes, providing an 
acceptable fit to the remaining dose–response data 
(Supplementary Table  5 and Table  4). Omission of the 
highest exposure dose also allowed the modeling of 
combined incidences of different tumors, which is a 
modeling option provided in the U.S. EPA BMDS soft-
ware (Table  4). Modeling of combined tumor outcomes 
allowed for greater sensitivity and resulted in lower 
BMD values compared to modeling of individual tumor 

Fig. 3 Benchmark dose modeling of all sites cardiomyopathy in male rats at 19 weeks. A Fitting of the data for CDMA exposures to the log-logistic 
model results in  BMD10 of 0.67 W/kg and  BMDL10 of 0.22 W/kg. B Fitting of the data for GSM exposures to the Weibull model results in  BMD10 of 
0.54 W/kg and  BMDL10 of 0.24 W/kg
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incidences. Even with the omission of the highest dose, 
 BMD10 values could not be modeled for heart schwan-
noma, brain meninges neoplasm, and combined tumors 
for GSM exposure (Table 4).

The combined neoplasm incidence data could be mod-
eled with a 5% increased incidence above background in 
the dataset without the highest dose (Table  4).  BMDL5 
value of 0.31  W/kg whole-body SAR was calculated for 

combined tumors in CDMA-exposed rats and  BMDL5 
value of 0.21  W/kg was calculated for GSM. These 
 BMDL5 values for combined tumor incidence are over-
all comparable to the  BMDL10 values for cardiomyopa-
thy effects. Of note, throughout our analysis, BMD and 
BMDL values were consistently lower for GSM-exposed 
animals relative to CDMA exposures, indicating greater 
sensitivity to GSM modulation in the NTP study.

Discussion
Radiofrequency radiation can elicit carcinogenic, geno-
toxic, reproductive, developmental, neurological, and 
cognitive effects [52–54]. Continuously increasing expo-
sure to radiofrequency radiation from wireless com-
munication devices and sources brings urgency to the 
question of health-protective limits for such exposures. 
Here we use benchmark dose modeling as an approach 
to develop health-based exposure limits for RFR based 
on animal toxicology data. The lower limit on the mod-
eled benchmark dose, abbreviated as BMDL, offers a 

Fig. 4 Benchmark dose modeling of right ventricle cardiomyopathy in female rats at 2 years. A Fitting of the data for CDMA exposures to the 
log-logistic model results in  BMD10 of 9.80 W/kg (above the highest dose of 6 W/kg tested in the NTP study, and thus not shown in the panel) and 
 BMDL10 of 4.30 W/kg. B Fitting of the data for GSM exposures to the log-logistic model results in  BMD10 of 3.83 W/kg and  BMDL10 of 2.32 W/kg

Table 1 BMD10 and  BMDL10 SAR values calculated with Bayesian 
model averaging for all sites cardiomyopathy in male rats 
following 19 weeks of exposure

CDMA GSM

BMD10, all doses 1.75 W/kg 0.94 W/kg

BMDL10, all doses 0.42 W/kg 0.29 W/kg

BMD10, the highest dose omitted 0.97 W/kg 0.58 W/kg

BMDL10, the highest dose omitted 0.27 W/kg 0.20 W/kg
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95% statistical estimate on the exposure dose associated 
with a 5% or a 10% change in response rate, which can 
be treated as a point of departure for the development of 
health-based exposure guidelines. To extrapolate from 
a point of departure from animal toxicological studies 
to the exposure level acceptable for the human popula-
tion, safety factors are commonly used, including a ten-
fold factor for differences between species (humans and 
laboratory animals, in this case) and a second tenfold 
factor for variability in the potential sensitivity within 
the human population [55]. The use of these two ten-
fold safety factors comes from a decades-old practice in 
chemical risk assessment. It is possible that the range of 
variations in sensitivity within the human population and 
the range of differences between species may not be cap-
tured in the conventionally applied ten-fold factors. Fur-
ther, to protect sensitive populations such as children, an 
additional safety factor may be necessary, an approach 
first introduced for pesticide risk assessment to account 
for susceptibilities during the vulnerable stages of early 
development [56].

Among the BMDL values calculated in this study, 
the most sensitive values were  BMDL10 for all sites 

cardiomyopathy at 19  weeks of exposure in male rats. 
The range of  BMDL10 values 0.2 to 0.4 W/kg, listed in 
Table  1, offers a point of departure for defining expo-
sure limits. The application of two ten-fold safety 
factors for interspecies and intraspecies variability 
(combined 100X factor) to the point of departure sug-
gests a whole-body SAR limit of 2 to 4 mW/kg for 
adults (Fig.  7). These SAR values are 20- to 40-fold 
smaller than the current U.S. whole-body SAR limit of 
0.08 W/kg. Application of an additional ten-fold safety 
factor to account for the greater sensitivity of the devel-
oping organism points to a whole-body SAR limit of 0.2 
to 0.4 mW/kg for the young child.

We note two key differences between the health-based 
exposure limits presented here and the current U.S. regu-
lations for radiofrequency radiation which set the limits 
of 0.08 W/kg for the whole-body SAR and the localized 
spatial peak of 1.6 W/kg SAR as averaged over 1 g of tis-
sue. These differences are in the selection of the point 
of departure and the application of safety factors. The 
existing U.S. radiofrequency radiation standards were 
based on the 1986 recommendations of the U.S. National 
Council on Radiation Protection and Measurements and 

Table 2 BMD10 and  BMDL10 SAR values calculated with Bayesian model averaging for right ventricle cardiomyopathy in male and 
female rats following a 2-year exposure

a  Calculated  BMD10 value is greater than the 6 W/kg highest SAR exposure dose in the study

Females
CDMA

Females
GSM

Males
CDMA

Males
GSM

BMD10, all doses 10.68 W/kga 4.86 W/kg 1.50 W/kg 0.81 W/kg

BMDL10, all doses 5.16 W/kg 2.18 W/kg 0.70 W/kg 0.42 W/kg

BMD10, the highest dose omitted 5.21 W/kg 2.94 W/kg 1.69 W/kg 0.69 W/kg

BMDL10, the highest dose omitted 2.70 W/kg 1.91 W/kg 0.79 W/kg 0.33 W/kg

Fig. 5 Prostate gland hyperplasia in male rats and adrenal medulla effects in female rats at 2 years
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Fig. 6 Neoplasm incidence in male rats at 2 years. Where no bar is shown, the specific outcome in question was not observed in the animal group. 
A Heart and brain tumors. B Pituitary gland, adrenal medulla, prostate gland, and liver tumors

Table 3 BMDS modeling of cancer incidence in male rats using the MS Combo model. Neoplasm incidence data analyzed here 
included all exposure groups

a  Calculated BMD value is greater than the 6 W/kg highest exposure dose in the NTP study

Exposure condition and tumor type BMD5 BMDL5 BMD10 BMDL10

CDMA, heart schwannoma 4.29 2.71 8.82a 5.40

CDMA, pituitary gland adenoma Could not be modeled

CDMA, liver adenoma Could not be modeled

CDMA, combined heart schwannoma, liver adenoma, and pituitary gland adenoma Could not be modeled
GSM, heart schwannoma 5.94 3.49 11.82a 6.20

GSM, brain malignant glioma 9.00a 3.60 Could not be modeled

GSM, brain meninges neoplasm (benign and malignant) 11.31a 3.89 Could not be modeled

GSM, adrenal medulla pheochromocytoma (benign and malignant) Could not be modeled

GSM, pituitary gland adenoma 2.86 1.15 Could not be modeled

GSM, combined heart schwannoma, brain glioma, and meninges neoplasm, adrenal 
pheochromocytoma, and pituitary gland adenoma

Could not be modeled
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1991 recommendations of the Institute of Electrical and 
Electronics Engineers [2, 40], which chose SAR value of 
4  W/kg as the point of departure based on changes in 
animal behavior observed in studies conducted in the late 
1970s and early 1980s.

The regulatory limit of 0.08  W/kg whole-body SAR 
was calculated by the application of two factors, a ten-
fold factor and a five-fold factor (combined 50X) to the 
4 W/kg SAR point of departure. While the first ten-fold 

factor accounted for the translation from animals to 
humans, the five-fold factor, proposed in the 1986 report 
by the U.S. National Council on Radiation Protection 
and Measurements, related to the difference in dura-
tion of work-related occupational exposure versus con-
tinuous exposure for the general public and not to health 
considerations [2]. The legal limit of 0.08  W/kg whole-
body SAR did not include safety factors to account for 
potential variability in the sensitivity within the human 

Table 4 BMDS modeling of cancer incidence in male rats using the MS Combo model. Neoplasm incidence data modeled here did 
not include the highest exposure dose of 6 W/kg

a  Calculated BMD value is greater than the 3 W/kg highest exposure dose included in this analysis

Exposure condition and tumor type BMD5 BMDL5 BMD10 BMDL10

CDMA, heart schwannoma 4.09a 2.12 8.41a 3.50

CDMA, pituitary gland adenoma 0.60 0.37 1.23 0.77

CDMA, liver adenoma 3.37a 1.84 6.93a 3.78

CDMA, combined heart schwannoma, liver adenoma, and pituitary gland adenoma 0.45 0.31 0.93 0.63
GSM, heart schwannoma 6.87a 3.01 Could not be modeled

GSM, brain malignant glioma 3.40a 1.86 6.99a 3.46

GSM, brain meninges neoplasm (benign and malignant) 4.21a 1.90 Could not be modeled

GSM, adrenal medulla pheochromocytoma (benign and malignant) 0.58 0.38 1.20 0.78

GSM, pituitary gland adenoma 1.06 0.51 2.17 1.06

GSM, combined heart schwannoma, brain glioma, and meninges neoplasm, adrenal 
pheochromocytoma, and pituitary gland adenoma

0.30 0.21 Could not be modeled

Fig. 7 Summary of health-based exposure limits calculated in this study. Whole-body SAR value of 0.2–0.4 W/kg was selected as a point of 
departure for calculating health-based exposure guidelines. Applying two ten-fold safety factors for interspecies and intraspecies variability (a total 
of 100X), a whole-body SAR limit of 2–4 mW/kg is derived for adults. The application of an additional ten-fold (10X) children’s health factor suggests 
a limit of 0.2–0.4 mW/kg whole body SAR for young children
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population and greater sensitivity of children. The local-
ized SAR limit of 1.6  W/kg was defined by multiplying 
the whole-body SAR limit of 0.08  W/kg by a factor of 
twenty [39, 40]. In the historical context of 1980s dis-
cussions of allowable exposure limits for occupational 
and general public exposures, the concept of a 20-fold 
increase of peak SAR relative to the whole-body SAR was 
based on the view that increase in tissue temperature was 
the main effect of radiofrequency radiation [40].

The epidemiological studies of mobile phone users and 
the reports of an elevated risk of head tumors on the side 
of the head where the phone was typically used  high-
light the toxicological importance of peak exposures in 
the part of the body closest to the wireless device [18–21, 
57]. For example, as reported in a study from Israel, there 
was a 50–60% increased risk of parotid gland tumors on 
the ipsilateral side where hand-held mobile devices were 
used, while on the contralateral side, the risk of parotid 
gland tumors was not significantly different from con-
trols [19]. Likewise, Hardell and coworkers reported a 
90% increased risk of glioma for long-term ipsilateral 
exposure of mobile phones [57].

In the NTP study, laboratory animals received whole-
body exposure to radiofrequency radiation from specially 
designed reverberation chambers [44, 45]. A dosimetry 
analysis for the animals in the NTP study reported the 
ratios between organ and whole-body SAR values [58]. 
According to that analysis, the peak SAR in the heart of 
male rats was 2.7 decibels (dB) higher than the whole-
body SAR [58]. This difference of 2.7  dB between heart 
and whole-body SAR is much smaller than  the 20-fold 
difference between localized and whole-body SAR 
assumed in the 1980s publications [39, 40].

In our view, more research is necessary to define what 
the acceptable, health-protective localized SAR value 
should be. An appropriate peak spatial SAR can be deter-
mined according to the concept of ALARA, or As Low As 
Reasonably Achievable, a concept developed for human 
exposures to ionizing radiation. Technical manuals for 
wireless devices specify that these products are tested 
for compliance with the SAR values defined under the 
U.S. Federal Communications Commission regulations, 
or under the corresponding regulations set by govern-
ment authorities in other countries. However, investiga-
tive reports found that wireless devices may not comply 
with these regulatory limits if tested in a real-life scenario 
where the device touches the body directly [59].

Finally, the methodology used for the development of 
health-based exposure limits, such as the benchmark 
dose modeling and the application of safety factors, 
remains an evolving area of research in risk assessment. 
The lack of information about the shape of the dose–
response curve below the lowest dose tested and the 

decreased incidence of various lesions observed at the 
highest dose tested by the NTP [42, 60, 61] pose ques-
tions for future research. The point of departure selected 
from benchmark modeling presented here,  BMDL10 value 
of 0.2–0.4 W/kg whole-body SAR, does not correspond 
to the true “No Adverse Effects Level”, which is likely 
lower. Falcioni and coworkers reported a No Observed 
Adverse Effects Level of 0.03  W/kg for heart schwan-
nomas in their study [7]. This NOAEL value is between 
the  BMDL10 values calculated here and the health-based 
limit of 2–4 mW/kg for adults that we defined by the 
application of two ten-fold safety factors. While the use 
of ten-fold safety factors is an established risk assess-
ment practice in the U.S. and other countries, it is pos-
sible that these standard factors either underestimate or 
overestimate the extent of variability in sensitivity within 
the human population. Even with the outstanding ques-
tions, the NTP and the Ramazzini Institute data on the 
RFR effects in laboratory animals are a valuable resource 
for the development of health-based guidelines for RFR 
exposures in people [41, 42].

Conclusions
The analysis presented here supports a whole-body SAR 
limit of 2 to 4 mW/kg for adults, an exposure level that 
is 20- to 40-fold lower than the legally permissible limit 
of 0.08 W/kg for whole-body SAR under the current U.S. 
regulations. A ten-fold lower level of 0.2–0.4 mW/kg 
whole-body SAR may be appropriate for young children. 
Both technology changes and behavior changes may be 
necessary to achieve these lower exposure levels. Simple 
actions, such as keeping the wireless devices farther away 
from the body, offer an immediate way  to decrease RFR 
exposure for the user.
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